基于声凝并的 PM$_{2.5}$脱除技术研究进展(I)：
声凝并预处理技术

凡凤仙，白鹏博，张斯宏，胡晓红
（上海理工大学 能源与动力工程学院，上海 200093）

摘要：声凝并是控制 PM$_{2.5}$排放的重要预处理措施。经声凝并后颗粒粒径分布向大粒径方向迁移，从而促进后续除尘装置将颗粒脱除。回顾了国内外声凝并技术的研究进展，分析了目前声凝并技术研究存在的问题，指出今后对 PM$_{2.5}$声凝并脱除技术的研究重点和方向，旨在为经济、高效的燃源 PM$_{2.5}$排放控制技术的研究和开发提供参考。

关键词：PM$_{2.5}$；声凝并；颗粒脱除

Research Progress of Acoustic Agglomeration-based PM$_{2.5}$ Removal Techniques (I):
Pretreatment Techniques of Acoustic Agglomeration

FAN Fengxian, BAI Pengbo, ZHANG Sihong, HU Xiaohong
（School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China）

Abstract: Acoustic agglomeration is an important pretreatment method to control PM$_{2.5}$ emission. Through acoustic agglomeration, the particle size distribution shifts to large particle size, promoting the particle removal by sequent dust removal devices. The research progresses of acoustic agglomeration technique at home and abroad are reviewed. Its existing problems are summarized. The emphases and direction of future research on the PM$_{2.5}$ removal techniques by acoustic agglomeration are proposed, which can provide references for the research and development of economical and high-efficient control techniques of PM$_{2.5}$ emission from combustion source.

Keywords: PM$_{2.5}$; acoustic agglomeration; particle removal

PM$_{2.5}$是指悬浮在大气中空气动力学直径小于或等于 2.5 μm 的颗粒物，其极易富集重金属和多环芳烃等强致癌污染物，且能够经呼吸系统进入人体，对人体健康造成严重威胁[1]。文献[2-3]表明，
PM_{2.5}与呼吸系统、心血管以及肺部疾病的发病率、死亡率密切相关，同时，PM_{2.5}影响大气环境，造成能见度下降，加速酸雨、光化学烟雾以及雾霾的形成[4]。此外，PM_{2.5}在大气中停留时间可达数天至数十天，通过长距离传输，产生大范围污染[5]。

PM_{10}主要包括燃料的高温燃烧过程排放的一次PM_{10}，和大气中气体污染物发生气-粒转变形成的二次PM_{10}。燃煤电站、工业炉窑、钢铁厂、交通车辆、生物质燃烧等是一次PM_{10}的主要源头[5-8]。造成一次PM_{10}大量排放的原因是：现有的常规除尘方式虽然对大颗粒物的控制已经达到很高的水平，但对PM_{10}的脱除效果仍较差，从而造成未被除尘器捕集的PM_{10}，排放到大气中。为控制PM_{10}的排放，一些学者对PM_{10}凝并预处理技术开展了一系列研究，即在除尘器前端增设预处理装置使PM_{10}，在物理或化学作用下，碰撞凝并为较大颗粒，以提高常规除尘装置的效率。目前发展出的凝并预处理技术包括声凝并[9-11]、蒸汽相变凝并[12-13]、电凝并[14]、磁凝并[15]等。其中，声凝并与其他预处理技术相比，装置简单，不受颗粒润湿性、荷电性、磁性等条件的限制，可用于高温和高压环境，具有良好的适用性，因而富有工业应用潜力，备受研究者关注[16]。

本文对国内外声凝并技术相关研究进展进行评述，并指出目前存在的问题，并以探讨燃烧源PM_{10}的低成本、高效率脱除方法为目标，对今后PM_{10}声凝并脱除技术的研究重点和方向进行展望。

1 声凝并技术研究进展

声凝并涉及声波对颗粒的夹带-颗粒运动对声场的扰动，扰动速度对颗粒运动的影响，声波的折射、散射对颗粒的作用，高强度声场引发湍流等复杂的现象和过程。在多种机理共同作用下颗粒相互靠近，发生碰撞接触，进而凝聚成较大的颗粒，使得颗粒数目浓度降低，颗粒径分布由小径向大径方向迁移。声凝并过程示意图如图1所示。目前的研究认为声凝并机理是流体夹带作用力和基于声波的非对称性产生的颗粒凝聚作用力，声致湍流凝并是指强声波的非线性效应导致的流体湍动引起的颗粒凝聚。这些声凝并机理的详细介绍见文献[9]。

图1 声凝并过程示意图

Fig. 1 Schematic diagram of acoustic agglomeration process

声凝并技术已有很长的历史，但长期以来相关工作主要在国外的研究机构进行。1931年，Patterson等[17]首次在实验中发现了MgO气溶胶在驻波声场中发生凝并的现象。1951年，Fahnoe等[18]采用0.8～5 kHz的声场对平均粒径为1 μm左右的NaCl气溶胶进行预处理，从而提高旋风除尘器的效率。1965年，Mednikov[19]就前期的声凝并研究进行了系统的阐述和总结。在20世纪70年代，随着发达国家环保意识的增强，声凝并相关研究报道增多。1975年，Scott等[20]采用锯齿波对ZnO气溶胶进行了声凝并实验，取得了较好的效果。1976年，Volk等[21]采用声压级为100～120 dB，频率为1～6 kHz的声源，对粒径为0.01～1 μm，质量浓度为0.5～2 g·m^{-3}的炭黑颗粒进行声凝并实验，结果表明，声压级的提高和质量浓度的增加都有利于声凝并；声场频率为3 kHz时声凝并效果最佳，但由于采用的声压级较低，因而需10～50 s才能达到较好的声凝并效果。1979年，Shaw等[22]采用单分散分布的聚苯乙烯PSL颗粒（粒径分别为0.17，1.2 μm）和邻苯二甲酸二辛酯DOP颗粒（粒径分别为0.24，0.34 μm）进行声凝并实验，取得了一定的效果。Rajendran等[23]对比了平均粒径为1.3 μm，质量浓度为1.6 g·m^{-3}的NH_{4}Cl颗粒分别在正弦波和驻波声场中的凝并效率，发现驻波声场对颗粒的凝并更
为有效：Gallego-Juárez等对平均粒径为0.6 μm的炭黑颗粒进行声凝并实验。在声压级为159.5 dB，频率为20.4 kHz条件下，发现声场作用后颗粒的平均粒径增加到9.6 μm。1983年，Cheng等采用声压级为145～155 dB，频率为0.6～3 kHz的行波声场，对平均粒径为0.16～0.3 μm的NH₄Cl颗粒进行声凝并实验。结果显示，声凝并效果随频率的增加而提高。1986年，de Sarabia等利用频率为20.4 kHz的驻波声场对粒径为0.07～3 μm的炭黑颗粒进行声凝并实验研究。1987年，Tiwary等对平均粒径为5 μm的燃煤飞灰展开声凝并实验，发现温度、颗粒质量浓度以及声压级的增加均有利于颗粒的凝并。1989年，Magill等针对橡胶燃烧产生的烟尘开展声凝并实验。在声压级为150 dB，频率为21 kHz的声场条件下，发现颗粒粒径显著增大。1991年，Magill等在分别于9.4, 21 kHz的声场中对平均粒径为0.8 μm的乙二醇液滴进行声凝并实验。结果显示，9.4 kHz时声凝并效果较好；Gallego-Juárez等分别对微米尺度的炭黑颗粒，粒径为0.8 μm的液滴以及炭黑与液滴混合颗粒进行声凝并实验。结果表明，液滴的凝并效果优于炭黑颗粒，炭黑颗粒中混入液滴后凝并效果增强。此后，Capérán等采用21 kHz的超声换能器作为声源进行了一系列声凝并实验，发现该声源对乙二醇液滴（0.5～2 μm）、TiO₂颗粒（0.5～5 μm）、燃煤飞灰（0.6～6 μm）和油滴（0.6～7 μm）均能产生明显的凝并作用。1999年，Gallego-Juárez等将声凝并技术与工业应用相结合，利用4台功率为400 W的压电换能器作为声源，在频率分别为10, 20 kHz时对流化床燃煤锅炉排放的含尘烟气（烟温为150°C，颗粒数浓度峰值粒径为1 μm，粒径为0.018～10 μm）进行预处理。结果表明，增设声凝并预处理装置后，静电除尘器出口处颗粒数浓度降低40%左右，但20 kHz时的预处理效率比10 kHz时的略高。2000年，de Sarabia等采用与Gallego-Juárez等相同的声源控制柴油机尾气中的亚微米颗粒（0.02～0.7 μm），实验发现，20 kHz时颗粒数浓度减少56%，10 kHz时颗粒数浓度仅减少8%。2004年，Komarov等实验研究了900°C时不同频率（0～1 kHz）下Zn颗粒（0.1～80 μm）在氢气中的声凝并效果。

在国内，虽然魏振国等于1964年就全面介绍了气溶胶颗粒声凝并的动力学机制，但直到1985年他们才发表了多分散气溶胶声凝并效率与声场参数关系的研究论文。1995年，黄虹宾等在声压级为150 dB，频率为1.5 kHz的声场条件下，对燃煤飞灰的声凝并进行了冷态实验。2000年，Liu等对外加声场增强旋风除尘器脱除燃煤飞灰的效果进行了冷态实验，发现在声压级为110～150 dB，频率为0.5～2.5 kHz时，经声凝并后旋风除尘器的效率可增加3%～4%。2002年，侯双全等利用声凝并技术进行了水雾消散实验。2006年，姚刚等利用驻波声场对取自除尘器的中位粒径约为3 μm的燃煤飞灰进行了冷态声凝并实验，发现在声压级为150～160 dB，频率分别为1.413 kHz和5 kHz，颗粒在声场中的停留时间为3～5 s时，颗粒数浓度减少10%～46%。2007年，陈厚涛等在声压级为160 dB，频率为1 kHz的驻波声场条件下对流化床燃煤炉产生的PM₃（数目浓度峰值粒径约为0.07 μm）进行了实验研究。发现声场作用后PM₃的数目浓度减少了58.9%；徐鸿等利用声压级为110～140 dB，频率为1～5 kHz的行波声场对燃煤飞灰（取自布袋除尘器，质量浓度为1～5 g·m⁻³）进行了声凝并实验。2008年，孙鹏等利用行波声场对燃煤飞灰（取自布袋除尘器，质量浓度为1～5 g·m⁻³）进行声凝并实验，结果表明，烟温在20～60°C范围增大时，声凝并效果增强。2009年，陈厚涛等对柴油机尾气中的PM₃（数目浓度峰值粒径约为0.07 μm）进行了声凝并实验。结果显示，当声压级为161.5 dB，频率为1 kHz时，颗粒数浓度减少55.7%；Liu等利用驻波声场对燃煤PM₃（取自静电除尘器，呈三峰分布，数目浓度峰值粒径分别为0.10, 0.76, 1.95 μm）进行了声凝并实验。结果表明，当声压级为147 dB，频率为1.4 kHz时，PM₃数目浓度减少75.6%。2010年，孙德帅等对燃煤颗粒（取自静电除尘器，质量中位粒径为14.36 μm，质量浓度为6.9 g·m⁻³）在驻波声场中的凝并进行实验。结果表明：当频率为0.25～3.5 kHz时，颗粒的质量脱除效率随频率的增加而先增加后减小；当频率为1.416 kHz时，脱除效率最高。2011年，Liu等针对频率对取自静电除尘器的燃煤飞灰声凝并效果的影响进行了实验研究，结果显示，
1.4 kHz 和 1.6 kHz 时声凝并效果显著，而在高频 20 kHz 时声凝并效果很弱。杨振楠等 [32] 在不同气氛下对燃煤飞灰（取自静电除尘器，质量中位粒径为 14.36 μm，质量浓度为 6.8 g·m⁻³）在驻波声场（声压级为 120 dB，频率为 1.416 kHz）中的凝并脱除进行实验研究。发现当在空气气氛中颗粒质量脱除效率最高，为 37%；在 N₂ 与 CO₂ 混合气气氛中为 25.3%；在 CO₂ 气氛中为 17.5%。2016 年，康豫博等 [33] 对粒径为 0.01～0.487 μm 的碳烟颗粒在声压级为 155.6 dB，频率为 20 kHz 的声场中的凝并脱除进行实验研究，结果显示，延长作用时间、提高初始颗粒数目浓度、增大颗粒粒径均能改善声凝并效果。

2 声凝并技术研究存在的问题

基于目前声凝并技术研究进展，对已有研究中采用的颗粒类型进行归纳总结，如表 1 所示。由表中可知，早期的研究主要针对气溶胶发生器产生的单一组分颗粒或单分散颗粒，直接对燃烧源颗粒进行研究的较少；近二十年的研究中，虽然广泛采用燃烧源颗粒，但是这些颗粒往往取自常规除尘设备所收集的飞灰，其粒径很大程度上超出了 PM₂.₅ 的范畴，针对燃烧源 PM₂.₅ 进行的研究较少 [36-45,48-53]。不同类型颗粒的密度、粒径和数目浓度均有差异。颗粒密度和粒径将决定颗粒所处的区域，密度和粒径都较小的颗粒处于零惯性区，容易被声波完全夹带。颗粒间的相互作用较弱；随着密度的增加，颗粒将处于有限惯性区，颗粒的夹带运动差异增大，同向作用和流体力学作用均增强，颗粒数目浓度增大时，颗粒间距减小，颗粒间的相互作用增强，有利于声凝并的进行。这些影响规律已被实验 [27,30,31] 和数值模拟 [10-11,54-56] 证实。但是，需注意的是颗粒来源不同则颗粒所处气氛往往不同，因而气相的黏度和密度可能不同，会影响颗粒的凝并效果及颗粒在不同气氛对燃烧源 PM₂.₅ 声凝并的作用效果及影响机制还有待进一步的理论分析和数值模拟研究。

表 1 已有声凝并实验研究中采用的颗粒类型

<table>
<thead>
<tr>
<th>年份</th>
<th>研究者</th>
<th>颗粒类型</th>
<th>颗粒数/μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>Volk 等 [21]</td>
<td>炭黑颗粒</td>
<td>0.01～1</td>
</tr>
<tr>
<td>1979</td>
<td>Shaw 等 [22]</td>
<td>PSL 颗粒</td>
<td>0.17，1.2</td>
</tr>
<tr>
<td>1983</td>
<td>Cheng 等 [23]</td>
<td>DOP 颗粒</td>
<td>0.24，0.34</td>
</tr>
<tr>
<td>1958</td>
<td>de Sarabia 等 [26]</td>
<td>NH₄Cl 颗粒</td>
<td>0.16～0.3</td>
</tr>
<tr>
<td>1986</td>
<td>Tiwary 等 [27]</td>
<td>烟黑颗粒</td>
<td>0.07～3</td>
</tr>
<tr>
<td>1995</td>
<td>Capéran 等 [31-33]</td>
<td>除尘器捕集的燃煤飞灰</td>
<td>0.2～30</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td>乙二醇液滴</td>
<td>0.5～2</td>
</tr>
<tr>
<td>1999</td>
<td>Gallego-Juárez 等 [34]</td>
<td>TiO₂ 颗粒</td>
<td>0.5～5</td>
</tr>
<tr>
<td>2000</td>
<td>de Sarabia 等 [35]</td>
<td>烟煤飞灰</td>
<td>0.6～6</td>
</tr>
<tr>
<td>2004</td>
<td>Komarov 等 [36]</td>
<td>油滴</td>
<td>0.6～7</td>
</tr>
<tr>
<td>2007</td>
<td>陈厚涛等 [37]</td>
<td>焦炭烟煤炉产生的飞灰</td>
<td>0.018～10</td>
</tr>
<tr>
<td>2007</td>
<td>徐鸿等 [38]</td>
<td>焦炭机排放的颗粒</td>
<td>0.02～0.7</td>
</tr>
<tr>
<td>2009</td>
<td>Komarov 等 [39]</td>
<td>Zn 颗粒</td>
<td>0.1～80</td>
</tr>
<tr>
<td>2009</td>
<td>陈厚涛等 [40]</td>
<td>流化床燃煤炉产生的飞灰</td>
<td>0.023 3～0.5</td>
</tr>
<tr>
<td>2009</td>
<td>Liu 等 [41]</td>
<td>布袋除尘器捕集的燃煤飞灰</td>
<td>0.2～750</td>
</tr>
<tr>
<td>2010</td>
<td>陈厚涛等 [42]</td>
<td>柴油机排放的颗粒</td>
<td>0.023 3～1</td>
</tr>
<tr>
<td>2012</td>
<td>Liu 等 [43]</td>
<td>静电除尘器捕集的燃煤飞灰</td>
<td>0.07～6</td>
</tr>
<tr>
<td>2016</td>
<td>康豫博等 [53]</td>
<td>煤烟</td>
<td>0.01～0.487</td>
</tr>
</tbody>
</table>
已有研究通过改变操作参数（声压级、频率、停留时间等）探讨声凝并效果的变化规律，在一些参数对声凝并的影响上取得了一致的结论，即声凝并效果随着声压级的提高、停留时间的延长而增强，声压级提高，则声波振幅增大，颗粒受声波夹带引起的同向运动凝并作用增强，同时颗粒之间的流体力学作用加剧。尤其是在强声场（大于158 dB）作用下，声致湍流凝并机理也发挥着显著作用。多种凝并机理的共同作用导致声凝并效果随着声压级的增大迅速提高。然而，在关于频率的影响作用方面还存在争议。表2总结了已有颗粒声凝并技术研究中获得的有利于声凝并的较优或最佳频率。可见，不同研究者得到的结果差异很大。频率对声凝并的影响复杂，其原因表现在两个方面：一方面，从同向运动凝并机理看，频率过低时，颗粒能很好地跟随气体介质振动，颗粒间相对运动很弱，频率过高时，颗粒保持静止，也不存在相对运动。另一方面，从流体力学作用机理来看，频率的增加增强了颗粒间的流体力学作用。有利于声凝并。综合以上两个方面的原因可知，频率是影响声凝并的重要参数，但其作用效果复杂，仍需要做深入探讨。

<table>
<thead>
<tr>
<th>年份</th>
<th>研究者</th>
<th>颗粒特性</th>
<th>频率/kHz</th>
<th>较优或最佳频率/kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>Volk等[21]</td>
<td>质量浓度为0.5~2 g·m⁻³的亚微米颗粒</td>
<td>1~6</td>
<td>3</td>
</tr>
<tr>
<td>1983</td>
<td>Cheng等[25]</td>
<td>平均粒径为0.16~0.3 μm</td>
<td>0.6~3</td>
<td>3</td>
</tr>
<tr>
<td>1991</td>
<td>Gallego-Juárez等[38]</td>
<td>平均粒径为0.8 μm</td>
<td>9.4, 21</td>
<td>9.4</td>
</tr>
<tr>
<td>1995</td>
<td>Capéran等[31]</td>
<td>数目浓度峰值粒径为0.8 μm的PM₁₀</td>
<td>10, 21</td>
<td>21</td>
</tr>
<tr>
<td>2000</td>
<td>de Sarabia等[36]</td>
<td>数目浓度峰值粒径约为0.02~0.7 μm的亚微米颗粒</td>
<td>10, 20</td>
<td>20</td>
</tr>
<tr>
<td>2009</td>
<td>Liu等[40]</td>
<td>三峰分布，数目浓度峰值粒径分别为0.10, 0.76, 1.95 μm</td>
<td>0.7~3</td>
<td>1.4</td>
</tr>
<tr>
<td>2010</td>
<td>孙德等[39]</td>
<td>质量中位粒径为14.36 μm，质量浓度为6.9 g·m⁻³</td>
<td>0.25~3.5</td>
<td>1.416</td>
</tr>
</tbody>
</table>

3 结 语

声凝并作为一种PM₁₀脱除预处理技术与其他技术相比，具有装置简单、适应性强的优势。然而声凝并脱除PM₁₀技术迄今尚不成熟，主要表现在：针对燃烧源排放PM₁₀进行的研究较少。在频率对声凝并效果的影响上，仍需要做深入探讨。研究表明：频率是影响声凝并的重要参数，但其作用效果复杂，仍需要做深入探讨。

第3期 凡凤仙 等：基于声凝并的PM_{2.5}脱除技术研究进展(Ⅰ)：声凝并预处理技术